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Abstract

This paper presents a geometric analysis of bifurcations leading to

chaos for Hamiltonian ,systems with two degrees of freedom of the form

i-T - Y, y- -V(x). Two bifurcation parameters are considered. One is

the energy level and the other is an angle, t, between two homoclinic

orbits. Though global non-linearities are necessary, the results are

obtained by local analysis of the flow near the origin where it is

assumed that /DV(O) = I, the 2 x 2 identity matrix. For a fixed

energy level it is shown that as decreases through 906 the two

homoclinic orbits bifurcate into two homoclinic orbits, a periodic orbit,

and connecting orbits. These orbits can then be used to define a

compact region in f. Now treating the energy as a parameter value the

trajectory of orbits passing through this compact region can be described

using symbolic dynamics. In this case it is shown that a single periodic

orbit bifurcates into three periodic orbits whose stable and unstable

manifold intersect transversely.
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1. Introduction

In Hamiltonian systems, the existence of transverse intersections

between the stable and unstable manifolds of distinct periodic orbits gives

rise to regions in which solutions to the system exhibit complex or

pathological behavior. For Hamiltonian systems arising from a

Hamiltonian function, H: I - , Rod [7], and Churchill and Rod [2], [3]

and [4] established methods for showing the existence of such transverse

intersections. Essential to their methods is the fact that along solutions

of a Hamiltonian system the Hamiltonian function (i.e., the total energy)

is constant. Thus, by considering a fixed energy level, they need only

consider a 3-dimensional system. In the examples considered in [3], [4],

and [7], the analysis is almost exclusively limited to the energy levels at

which the complex behavior is exhibited.

In this paper, we treat the energy level as a bifurcation parameter,

and present an example in which a single periodic orbit bifurcates into

three periodic orbits whose stable and unstable sets intersect transversely.

Our example differs from theirs in two other ways. First, we do not

assume the existence of any global symmetries (compare with [3], [4], and

[7]). For the sake of clarity, we introduce a local symmetry at the

origin. However, this symmetry is not necessary and we sketch how the

results can be established for the more general nonsymmetric case. Second,

the Hamiltonian functions considered in [3], [4], [7], and here are all of

the form H(x,y) - j<y,y> + V(x) where x,y e W2 . In the former

papers, the origin is either a local minimum of V or a degenerate

saddle point (i.e. there exist directions in which V increases and other

I . . .
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directions in which V decreases). In our example, the origin is taken

to be a non-degenerate local maxima of V, i.e.

ra2 01
D 2V(0) - I I

LO a]

As will be seen, the set of pathological bounded orbits lies arbitrarily

close to the origin.

The energy level, H = 0, is the value at which the bifurcation takes

place. It is assumed that on this energy level two orbits, homoclinic to

the origin, appear. Furthermore, as the energy, H, is decreased, these

homoclinic orbits become disjoint periodic orbits. Section 3 will show that

if the homoclinic orbits approach the origin at a certain angle, then there

exists another distinct periodic orbit. These three periodic orbits are the

'basic" periodic orbits, whose stable and unstable sets are shown to

intersect transversely. If we take the "angle" between the homoclinic

orbits to be a bifurcation parameter (we are now letting the Hamiltonian

function vary), then we have another bifurcation occuring. In this case,

two orbits homoclinic to the origin, with their "nested" periodic orbits,

bifurcate into a periodic orbit and a region exhibiting the

above-mentioned pathological behavior.

Because we assume that the origin is a non-degenerate critical point

of V (and hence H), the solutions to Hamilton's equations

Xi M Yi

(1.1)
Yi = -DiV(x)

i ..
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can be approximated near the origin by solutions to the linear problem

defined by HL(x,y) = lky y> - Ra IX2 + a22X2). This is done in Section

2. In fact, in order to present the concepts clearly, we only consider the

linear problem in Section 2.1. To understand how the solutions behave

near the origin we restrict our attention to the set (z I H (z) = 0) and

replace the origin by a torus. This new space is called the critical

manifold. On this critical manifold we define a new flow, compatible

with that defined by (1.1), and use this new flow to analyze the behavior

of solutions passing near the origin.

Whereas the results of Section 2 are local in nature, Section 3 begins

the analysis of the global sructure of the solutions. As such we need to

introduce the global non-linearities of V. These are given as a series of

assumptions concerning the qualitative behavior of the flow generated by

the Hamiltonian system, rather than explicit restrictions on the potential

f unctions. There are reasons for choosing this indirect approach. First,

the hypotheses of the theorems are qualitative in nature. Unfortunately,

the analysis required to check that a particular potential function

satisfies such hypotheses is often long, sometimes difficult, and usually ad

hoc. For a discussion on the types of functions which give rise to this

qualitative behavior, or on the types of arguments which can be

employed to demonstrate such behavior, the reader is referred to [1], [2],

[3], [4], and [7]. Second, in order to obtain pathologies in the manner

described in this paper, one needs rather mild assumptions. In fact,

most of the assumptions we make can be changed without significantly

altering the results. We chose the conditions on V so as to emphasize



the underlying causes of the results rather than to obtain the most

general or most easily applicable results.

Also, in Section 3, we restrict our attention, for the most part, to

2
V(x1 )- - -~-(x2 + x2) + Vo (x)

where V 0 (x) is 0(flxjl2 ) at the origin. We use the results of Section 2

to prove the existence of an isolated periodic orbit which persists for all

energy levels near the bifurcation point H = 0. Changing to the case

where the angle between the homoclinic points is used as a bifurcation

parameter, we prove (Theorem 3.20) that a periodic orbit bifurcates out

of two homoclinic orbits when the angle is 900. Finally, we comment

briefly on how similar results could be obtained for the case V(x1 ,x2 ) =

2(a2,x2 +2X2) + V0(X).1 2 2 o~)

The results of Sections 4 and 5 depend heavily on the work of Rod

[7] and Churchill and Rod [2]. Chapter 4 shows that the hypotheses of

their theorems are satisfied. Unfortunately, developing the language in

which to state the hypotheses is a lengthy process. Thus, rather than

repeat a substantial portion of their papers [2], [3], and [7], it is assumed

that the reader is familiar with their work, and hence, only the results

which differ substantially from theirs are proved.

In Chapter 5, using symbolic dynamics, we classify the set of orbits

which intersect a compact region defined by the "basic" periodic and

homoclinic orbits near the origin. Our presentation of these results is very

curt and the reader is referred to [2], [6] or [7] for a more complete

interpretation of results of this type.
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2. The Critical Manifold

2.1. The Linear System

For the sake of clarity of exposition, we begin by considering a

linear Hamiltonian system. For our purposes, the most general potential

function we can choose is of the form, -(a xI + a2 2

we are only concerned with the qualitative behavior, we can scale out

one of the coefficients to get,

V(x) ffi V(x 1,x, ) fi -l (x2 + ax), a 1. (2.1)

This gives rise to the Hamiltonian function, H: F x A2 A where

H(x,y) = - <y,y> + V(x). (2.2)
2

If we let z - (x,y) e P x I, then Hamilton's equations applied to (2.2)

give the linear system of differential equations,

z = Ax, = d/dt (2.3)

where

A=- 0 0 1
a1 0

By the chain rule we have that H is constant on solutions of (2.3).

Let M - (z c R I H(z) - 0). One easily checks that the origin, 0, is

the only critical point of (2.3) and that 0 c i. In order to understand

- . Wl j- , 
-R*'1,
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the behavior of solutions of (2.3) which lie in M and pass near 0, we

will replace the critical point by a critical manifold and define a flow

on our new space which corresponds to the old flow on this manifold.

This section details the construction of the critical manifold for (2.3). As

will be seen in the next section, this construction carries over to the class

of non-linear Hamiltonian systems which interest us.

Since (2.3) is a linear system it is possible to rewrite the differential

equations in polar form. Let S3(r) = (z c A4 1 Ilzfl = 1) and let

i E S3(l). Given z e iW\(O) there exists a unique r > 0 and a unique

g such that z = r;. The polar form differential equations are given in

the following lemma.

dLemma 2. 1: (a) t<~>=2<;,;> = 0

(b) r = r<A;,;> (2.4)

(c) = A; - <A;,;>; (2.5)

Proof: (a) This follows from <t> 1.

(b) Differentiating z = r; gives z = r + rAt. Taking the inner

product with ; and using (a) gives (b).

(c) Substitute (b) into (c). 0

Understanding the flow given by (2.4) and (2.5) turns out to be of

great importance. Of particular interest is the fact that (2.5) is

independent of r. This implies that S3(r) is an invariant set for (2.5),

for all r ) 0, which is not surprising since (2.5) is nothing more than
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the projection of the flow of (2.2) onto the unit sphere centered at the

origin. Since S3(r) is an invariant set of (2.5) it makes sense to ask how the

solutions restricted to S3(r) A M behave. Let P,: M - SR be given by

P1(x,y) - x. Let T(r) - S3(r) n M and define K(r) = (x I 2x2 + (1 + a)x2

- r}.

Proposition 2.2: T(r) is homeomorphic to a torus, i.e., S1 x S1.

Proof: K(r) defines an ellipse since r > 0, and hence is homeomorphic

to a circle, i.e., S1. Given x E K(r) one can check that

1

PI 1(x) = ((x,y) I <y,y> - -(r + (a2 - l)x 2)).

This implies that for all x e K(r), P~l(x) is homeomorphic to SI. We

can think of T(r) as a fiber bundle with base K(r) - S1 and fiber

P- 1(x) - S1. Since y corresponds to the velocity vector it is clear that

T(r) is orientable. Thus T(r) is a torus. 0

The eigenvalues of A are *1 and *a. The corresponding

eigenvector spaces are generated by (x1,0,x 1,0), (x1,0,-x 1,0), (0,x2,0,ax 2 ),

and (O,x 2,0,-ax.). The stable manifold to the origin, W, is spanned by

(x,-O-x 1,0) and (0,x 2,0,-ax2). The unstable manifold, WU, is spanned

by (x1,0,xO) and (O,x2,0,ax 2 ). Thus both Wu and W1 are two

dimensional manifolds contained in N Let

SU(r) _ Wu S3 (r) and S'(r) _ W A SS(r).
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The following is obvious.

Lemma 2.3: (a) Su(r) C T(r) and S'(r) C T(r) for all r ; 0.

(b) SU(r) and S'(r) are homeomorphic to S1.

Since (2.5) is independent of r, the description of the flow on T(r)

will be the same regardless of what value of r ; 0 is chosen. Hence,

without loss of generality, one can, for purposes of simplifying the

calculations let r 1. To simplify the notation let T = T(l), S3 = S3 (l),

S' = Su(l), and S' - S'(l).

Lemma 2.4: Solutions to (2.5) have the following properties:

(a) If ; is an eigenvector of A then =0.

(b) If ; c T and t j SuUS', then 0 00.

(c) Solutions on T\(SU U S') are heteroclinic orbits from fixed points of

S' to fixed points of S".

If a > 1, then the fixed points on T are the eigenvectors of A which

lie on T. Furthermore, the flow on S' consists of the four critical points

12"1(l,0,-l,O) and *(1+a2)'Ol,0,-a) plus heteroclinic orbits from

(I+a2)'O.(0,1,0,-a) to t2"(1,0,-I,0) and from *(l+a2)'(O,-lOa) to

t2"(1,O,-1,0). The flow on SU consists of the critical points k2"N(,,l,0)

and :(l+a2)'1(0,l,0,a) plus heteroclinic orbits from 2"A1.0l,0) to

*(l+a2)'NO,l,0,a) and from 2"--1,0,-1,0) to t(l+a2)ANO,l,0,a).

If a - I then all the elements of S' U SU are fixed points.
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Proof: All the results are evident if one recalls that (2.5) is the projection of

the linear flow (2.3) onto the unit sphere. 0

Since (2.5) is derived from a linear system, one might hope to be able to

find a simple exact description of the heteroclinic orbits on T. If one

assumes that a = 1 then this is the case. For a > I we shall not attempt

to do so except for a few special orbits.

Notation 2.5: From now on t will denote a critical point in S' and

n a critical point in Su. For a > 1, the possible values of t and n

are given in Lemma 2.4. If a - I then " = (,-,- and

Definition 2.6: For fixed [ and n define a path in S3 by

w(tyl) _ w: [0,I] -S

where

w(4,n;c) (l-C)t . d1
II(l-c) + cnlI

For fixed t and n, define r(c) - + cnil-I and let W(c) =

r-l(c)w(c). Finally, let w(c) - (w1(c),W2(C),W3 (C),W 4(C)).

Proposition 2.7: w(t,ni): [0,1] - T if and only if n - ( 2,- 1 - Ia).

Proof: One needs to find the conditions on t and 17 such that for
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all c E [0,1], H(w(c)) = 0. By (2.2) this is the same as requiring that

wC(c) + w(c) - w.(c)- 0. (2.6)

At this point there is a multitude of cases which need to be checked. If

a > I then the results follow by simple substitution. We shall

demonstrate the case in which a = 1.

Substitution of Notation 2.5 and Definition 2.6 into equation (2.6)

plus some simple calculations yield

t1n1 -42'2 (2.7)

or

t272 2 2
1, t2I  7 ,2. (2.8)

Since t,1? e S3, one has that

2(t + t) - I - 2(n; + 27). (2.9)

Using (2.9) to solve for t and 172 and substituting into (2.8) gives

171  "2T A similar argument gives 112 = *t. The desired result now

follows from (2.7) and (2.8). 0

Definition 2.8: Given 4 define 17+ (62-l - !t 4 ,at3) and 17 -

"2,6A itV4-ats).

Proposition 2.9- The curves w(t,1+;c) and w(t,I.;c), for c c (0,I),

represent heteroclinic orbits on T\(S* U Su). If a - I these are all

the heteroclinic orbits described in Lemma 2.4.
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Proof: Again we are faced with a multitude of cases. We shall give the

proof for a - 1 and n+. The other cases follow in a similar manner. Let

V be the vector space spanned by and n.)+ w(c) is a curve which lies

in V r S3. If for any fixed c, = w(c) and C E V, then w(c) will

represent a heteroclinic orbit. Equation (2.5) gives

= Aw(c) - <Aw(c),w(c)>w(c)

- rAW(c) - r 3<AW(c),W(c)•W(c).

What needs to be shown is that there exist real numbers d and e such

that dC + en+ - . Simple but tedious calculations give that:

AW - (c4 2 - (1-c)tl, -(I-c)t 2 - c4 1, (l-C)tl + cC, (1-C)C2 - cC1),

<AW,W> - 2c - I,

d = -r(--c)[l + (2c-I)r 2],

and

e - r c [i - (2c-I)r 2].

The details of checking that d C + en+ - is satisfied is left to the reader. 0

Consider (2.4) restricted to T. Notice that z - rC E S' implies i < 0

and z E Su implies i > 0. We want to describe the set of points on S3(r)

at which i - 0. For r > 0 this means solving <AC,C> - 0. One easily

checks that if z lies in the vector space spanned by
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M(, ¢v"(a(l+a 2))" , 1, -€'1 (1+a2)'), (), vT2(a(l+a0))" , -1, /2"a(l +a 2)'-N

or, by

(H-, ¢v"(a(l+a0))- , 1, -¢/Ya'(l+a 2)-') (_1, vl2(a(l+a0))" , 1, v/-(l+a)').

then <Az,z> = 0, i.e., if z = r; then r - 0. On the other hand, since

V<Az,z> t 0 for all z 0 0, these planes are the only points for which

r - 0. These two planes intersect T(r) in two disjoint circles. Figure 1

describes the flow of (2.5) restricted to T(r) for a > 1. If a - I then

r - 0 at w(t,n;c) if and only if c - 1/2. If c E [0,1/2), then r < 0

and if c c (1/2,1] then r > 0.

INSERT FIGURE 1.

So far, the results of this section have been independent of r, the

only restriction being that r > 0. Now consider the case r - 0. In

, r - 0 corresponds to the origin which, according to (2.3), is a rest

point. While (2.5) is still applicable when r - 0, it is of limited use when

applied to a single point. Thus, to fully exploit (2.5) it is necessary to

construct a critical manifold, CM, to replace N. In particular the origin

in , 0, will be replaced by a torus, CT, on which (2.5) is defined in a

non-trivial manner. The details are what follows.

Let A I B denote the disjoint union of two sets A and B.

Definition 2.10. Let X - P$\(O) A S. Define h: X -. (v E 41 IlivJ i 1) by

4%

S

" .I- '.~
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(r~l); if z ( R'\(O)
h ( z ) - h ( r ) = z (-l

IL if z ES3 .

The topology of X is such that h is a homeomorphism.

The following system of coordinates will be used to describe the

elements of X. If z c X then z F 54\(O) or z c Ss. In the first

case, one writes z - r; - (r, ). In the latter case, one writes z - (0,).

Using this notation, one can check that (2.4) and (2.5) are well defined

on X. Furthermore, (2.4) and (2.5) give rise to a continuous flow on

X.

Since M\(O) C A4\(O) there is an obvious embedding of M\(O)

into X given by z - r; I- (r,;). In addition, under this embedding

M\(O) is not closed in X. Define CM to be the closure of M\(O) in

X. Let

CT - CM\(M\(O)).

Proposition 2.11: CT is homeomorphic to a torus.

Proof: Notice that CT C S3 C X, hence z E CT implies that

z - (0, ). Let ; c T then (r,;) i M\(O) for all r > 0. Thus

lim (r, ) - (0,;) F CT.
r'4o

If ; E S3\T then (0,;) is not a limit point of M\(O) in X, thus

(0,;) j CT. Therefore CT and T are homeomorphic which by

Proposition 2.2 implies that CT is homeomorphic to a torus. 0
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The flow on CM is determined by (2.4) and (2.5). Notice that for

(r,;), r > 0, one has the same flow as that determined by (2.3). However,

on CT the flow arises from (2.4) and (2.5) for r = 0. Since elements

of CT are of the form (0,;), CT is an invariant set of the flow. The

flow is continuous on CM since (2.5) is independent of r and (2.4) is

continuous in r for all r ) 0. This flow, which is a mapping

CM x A - CM, will be denoted by

((r,;),t) I- (r,;).t - (r.t,;.t)

where r-t is determined by (2.4) and (;-t) is determined by (2.5).

Definition 2.12: For fixed ro > 0 define:

B(ro) - ((r,;) C CM I r ( ro )

B'(ro) = ((ro,;) E CM I 4 0)

BU(ro) - ((ro,;) E CM I 0 0).

Remarks 2.13: (a) Tr(r) = B'(r) U Bu(r).

(b) It follows from Proposition 2.2, Lemmas 2.3 and 2.4, and (2.5) that

B'(r) and Bu(r) are homeomorphic to annuli.

(c) B"(r) A BU(r) is homeomorphic to two disjoint circles (see

comments following Proposition 2.9) which will be denoted by C,(r) and

C2(r).

(d) In the language of Conley [5], B(r), r > 0 is an isolating

neighborhood for the maximal invariant set CT. The exit set and

entrance set for B(r) are given by Bu(r) and B'(r), respectively.
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Proposition 2.14: Given (r,t) E B'(r)\S'(r) there exists a unique

t*- t(r,;) W 0 such that (r,;).t* I Bu(r)\Su(r) and (r,;).[O,t]j C B(r).

Define tp: B*(r)\SS(r) - Bu(r)\Su(r) by ip(r,;) - (r,;).t(r,;), then 'p is

a homeomorphism.

Proof: Because the flow defined on CM corresponds to the flow of the

linear equations (2.3) for all elements except those on CT, it is clear

that if (r, ;) -A C B(r) then (r,;) c T(O). Also, from the linearity of

(2.3), one has that if (r, t) -t i B(r) for all t ) 0 then (r, t) e S'(r).

Likewise, if (r, t).-t c B(r) for all t < 0 then (r,t) i Su(r). Thus,

one has the existence of t* if (r,;) c B'(r)\S'(r), and one has that

,f("(r\S'r))- Bu(r)\Su(r).

That (f is a homeomorphism follows from the uniqueness of solutions

of ordinary differential equations. 0

Corollary 2.15: fp is the identity on C,(r) U C2(r) - B'(r) r) Bu(r).

In what follows, it will be useful to keep in mind that M C CM.

Thus, if (r,;) cCM and r > 0 then

P,(r,;) - (r;1,rt.) c 2

Also, in most cases, when one deals with the sets B(r), Bu(r), and Be(r)

it is assumed that r > 0 and fixed. Hence, for convenience sake, let

B -B(r), Bu- Bu(r), and B' - 111(r).
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Remarks 2.16: Recall that the purpose of the critical manifold is to

describe the behavior of solutions of (2.3) passing near the origin. This

will be done by describing the map p using Figures 2, 3, and 5, and

the fact that the following conventions have been adopted.

(a) The projection under P1 of a radial line in Figures 2, 3 and 5

is always a single point x. In the language of the proof of Proposition

2.2, the radial lines are subsets of the fibers.

(b) The projection under P1 of a concentric circle is K(r).

(c) Let L i C W:, i - 1,2 be rays emanating from the origin with slope m

and -m, m > 0. Let L1 lie in the first quadrant, and L2 lie in the

fourth quadrant, and let V denote the angle between the line segments. Let

Ai - P 11(Li) for i - 1,2. Define Al = Ai () Bu and A! = Ai r) B'. Then

iA\S' consists of two line segments. Denote these line segments by A,, or

A, 2 depending on whether they intersect C1 or C2, respectively. Similar

definitions can be made for A?,, j - 1,2. Finally, define d - C I r) A

d! = C n A^ j, eCj n AA. ande- C n As

(d) Let (x,y) - du where y - (ny1,-y,).

(e) Let J represent the convex region in 5 bounded by Li,

i - 1,2. The shaded regions in Figure 2 consist of those elements of B

which project under Pi into J.

INSERT FIGURE 2.

INSERT FIGURE 3.



For the moment we restrict our attention to the case a - 1. A typical

element of SS(r) must be of the form (r,t). Furthermore, Jim (r,t).t

(0, k) e S'(0) C CT. By Proposition 2.9 and Definition 2.8, w(t,n:,;c)

describes the two heteroclinic orbits on CT connecting (0,0) e S'(0) to

(0'%I) e Su(0). In addition, lim (r,17:) - (0,r1,). This allows us to define

the following paths in CM.

Definition 2.17: Given any (r,t) c SO let 7y*(t): [0,3] -B(r) denote the two

paths defined by

7:jt)(S) (r,t) -s/I-s for s e [0,1)

7t(t)(1) =(Olt)

=/tOs (Ow(~,?1; s-i) f or s e (1,2)

7,t)s (r,%1) -(3-s)/(2-s) for s c (2,3].

Definition 2.18: Let d be a metric on CM. Let -f. [0,3] CM Let

(r,;) c CM. One says that the orbit of (r,C) lies in an e-tube about 7Y over

the interval [t 0,t1 ] if for all t e [t0,t1]

Proposition 2.19: If a w 1 then the images of Mij for i - 1,2, j - 1,2,

under (p are as given in Figure 3. (Notice the importance of 1).

Proof: Corollary 2.15 fixed the elements of C, and C. under ef.
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Let (r,;) e B'\S', then by Proposition 2.14 there exists a unique

t*,- t*(r,;) such that (r,;).[,t*] C B. Let, (r,;) E S'(r). Recall the

construction of 7+(). Each "piece" of 7 is made up of a solution to

(2.4) and (2.5). Thus, by coiatinuity one can choose (r,t) c B'\S' such

that the orbit of (r,;) lies in an c-tube of either 7+(t) or 7_(t) over

the interval [O,t*]. Remarks 2.16 (d) and (e) force d2 =

(r,;rm6,m3,-W3 ) and hence PI(A*,2 .t) $ J for all t > 0.

Finally, notice that <P,(r,??+),P 1(r,t)> - 0 and P,(r,'1+) - -P,(r,).

Thus the image of A, 2 under y must be as shown. The arguments for

p(A5,) are similar. 0

A technically incorrect but intuitively illuminating restatement of

Proposition 2.19 is as follows. If one considers the path of a solution to (2.3)

in x-space, then those orbits which lie on the stable manifold to the origin,

leave the origin on the unstable manifold in a direction perpendicular to the

direction of entry. In application, this means that orbits on the surface M

which pass close to the origin change direction by slightly less than 900. See

Figure 4.

INSERT FIGURE 4.

We now consider briefly the case a - I. Let

1t  0, 0,
01 + a 2  + a 2

,t2, j' ,0, ,0, V71-, 1O, 1 ,09
0i + a 2 1 + a3
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and *+ *(1/€, 0, 1/./T, 0). Let (r,;) E S3(r). If { *[ then

im (r,1).t = (0,*42). Assume lir (r,t).t - (0,t2). Then we can define

7±({): [0,]- B(r) as follows:

-()(s) (r,;) - s/I--s for s e [0,1)

7± -1 (0,[2)

( (0, w( 2,7); s-i)) for s e (1,2)

7±(lg)(2) - (O,ri)

7±(t)(s) = (r,n') • 3--s/(2--s) for s 1 (2,3].

If lim (r,;).t . (0,- 2 ) then there is a corresponding definition for 7±(0.
t -"M

The question of how to define 7-( *1) is more delicate. Because the

system is linear, we have an exact solution for (2.3), namely, z(t) = etZ.

Using this, we conclude that 7 should satisfy

7*(1)(2) - (O,r2) = 7(- t )(2).

I (This involves checking that (r,t) e CM close to (r,[ 1) implies that

(r,t).t*(r,.) is not close to (r,n')). A proof similar to that for Proposition

2.19 says that Figure 5 demonstrates how T acts on B'\S'.

INSERT FIGURE 5.

2.2. The Nonlinear System

The results of Section 2.1 are easily extendable to the class of non-linear

Hamiltonian functions, H i C2(W x A2, IR), given by
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1
H(x,y) = - <y,y> + V(x) (2.10)

2
where

V(x) a - (ax + ax2) + V(x) (2.11)

and Vo(x) = o( Ix 112) at the origin. As before, we note that the qualitative

picture near the origin will not change if we set a, = 1. The differential

equations of interest are given by Hamilton's equation, i.e.,

Xfy
(2.12)

y = -VV(x).

As in the case of (2.3), the origin, 0, is a fixed point for (2.12) and H

(i.e., (2.10)) is constant along solutions. Thus M - (z I H(z) = 0) is

invariant under (2.12). As before we can embed M\(O) into X and

define CM to be the closure of MIiO) in X. Define CT -

CM\(M\(O)). The question is whether the flow on CT determined by (2.12)

is the same as that of (2.3). The following theorem answers it in the

affirmative.

Theorem 2.20: (Hartman-Grobman). Let z - f(z), z c In and f(-) = 0. If

Df(F) has no zero or purely imaginary eigenvalues then there is a

homeomorphism h defined on some neighborhood U of F in W~ locally

taking orbits of the nonlinear flow T,, corresponding to z - f(z), to those of

the linear flow etDf(s ) corresponding to z - Df(iz)z. The homeomorphism

preserves the sense of orbits and can also be chosen to preserve parametrization

by time.

~N N
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3. Periodic Orbits

This section contains theorems concerning the existence of periodic

orbits arising from the Hamiltonian systems of the form (2.12). It is

worth emphasizing that these periodic orbits do not occur because of a

global symmetry but rather because of the local behavior described in

Section 2. For the sake of clarity in our exposition we shall assume

V(x) (X2 2 ) + Vo(x).

This is a strong assumption as it introduces local symmetry. However, it

is not crucial to the types of arguments used in the proofs that follow.

Let E(h) = (x I V(x) - h), then E is called an equipotential set of

V. Let h- < 0 < h . h- and h will be lower and upper bounds

for h and need to be chosen sufficiently small for the following

results to hold. We do not attempt to estimate what these values should

be.

Assumption 1:

(a) If h E (h',O) then E(h) - EO(h) U ET(h) U EB(h) where EO(h),

ET(h) and EB(h) are disconnected curves in R2. (See Figure 6.)

If x - (x11 x2 ) E ET(h) then x2 > 0. and if x c EB(h) then

x2 < 0. Furthermore ET(h) and EB(h) bound the regions

(x I V(x) > h) away from the xl-axis. EO(h) is the boundary of a

region (x I V(h) > h) which contains the origin.
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(b) If h - 0 then E(h) is as in (a). However, EO(h) is the origin.

(c) If h e (0,h + ) then E(h) is as in (a). However, EO(h) is the empty

set.

INSERT FIGURE 6.

To simplify the notation, if h - 0 let E - E(0), ET = ET(0), and

EB = EB(0). Let u: [0,1] - ET, v: [0,1] - EB be parametrizations of

portions of ET and EB respectively. (See Figure 7.)

As before, the origin in A' is a critical point with 2-dimensional

stable and 2-dimensional unstable manifolds denoted by W' and Wu,

respectively. Let Pi(h): (z I H(z) = h) - W, i = 1,2, be given by

P1(h)(x,y) -x and P2(h)(x,y) - y. Again, to simplify the notation we

write Pi = Pi(0). It is easily checked that, if H(x,y) = h and

x E E(h) then y = 0. Thus, no confusion should arise if one considers

E(h) C A or E(h) C ((x,y) I H(x,y) - h). In particular, u(s) and v(s)

will be used interchangeably to denote elements of I2 and elements of

N

Definition 3.1: Given z E A4 such that H(z) - h, define

-(z) - inf(t > 0 1 P,(h)(z.t) lies on the x,-axis).

Assumption 2:

(a) u(0) and v(0) lie on the stable manifold of the origin.
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(b) )(u(s)) and )X(v(s)) exist for all s c(0,1].

(c) P1 (uS) - X(u(s)) - P,(v(s) - X(v(s))) for all s c (0,I]. (See Figure 7.)

INSERT FIGURE 7.

Let P :X - -1,11 x [-1,1] for i - 1,2 where P*(r,;) (1'2

and P*(r,;) = ~~4. By assumption 2(a), u(0) and v(O) are elements

of Win. Thus u(0) and v(0) are elements of M. By the conventions

of Section 2

lim u(0) t - (0,Q(u)) cCT

(3.2)

1 im v (0) t - (0, t(v)) c CT.

Definition 3.2- Let *, 0 0 4 0 180 0, be the angle def ined by

_________ P71MV))Cos # -

Assumption 3: O 0 < 90o.

Assumption 4: If (x,(t),x2(t)) - P,(u(0).t) then x 1(t) > 0 and

x2(t) > 0 for all t c [0,-). If (XI(t),X2(t)) = P1(V(0).t) then xl(t) > 0

and x2(t) < 0 for all t c [0,-).

Definition 3.3: Let cs) E (-11,0] and O(s) e[0,R1] for s c (0,1] be
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defined by

cos(C(s)) = <P 2(u(s) X(u(s))),(1,O)>

lIP2(u(s), X(u(s))) 11

cos(O(s))= < P(v(s)-X(v(s)))(lO)>
IP2(v(s). X(v(s))) 11

Geometrically, o(s) and 0(s) represent the angles through which the orbits

originating at u(s) and v(s), respectively, cross the x1 -axis for the first time.

Definition 3.4: 'V(s) = B(s) -o(s).

Assumption 5: V(1) < IT.

Theorem 3.5: Given assumptions 1-5, there exists at least one periodic orbit

on the energy surface (z I H(z) = 0).

The proof of this theorem is straightforward once one deals with the

following two technicalities. First, at present T is only defined for

s c (0,1]. One needs to extend the definitions of a and 8 in such a

way that they are continuous functions on the closed interval [0,1]. This

in turn will mean that T is a continuous function on [0,1]. Second,

one needs to know the value of T(0). As will be shown, Assumption 3

forces 11(0) > n. Assume these problems have been dealt with.

Proof: Since T is continuous on [0,1], T(0) > it, and ?(I) < it, there

exists an s* c (0,1) such that t(s*) - 17. This in turn implies that the
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orbit passing through u(s*) crosses the x1 -axis in exactly the opposite

direction from the orbit passing through v(s*). Since V(u(s*)) - 0 -

V(v(s*)), the velocity at these points is zero. Thus, the same orbit passes

through u(s*) and v(s*). Invoking the reversibility of Hamiltonian

systems, one has that the same orbit passes through u(s*) and v(s*) and

hence that this orbit is periodic. 0

The critical manifold can be used to define a(0) and 0(0) in

such a way that a and 8 are continuous functions in [0,1]. For the

moment, consider only the function a. As was mentioned before, a(s)

represents the angle at which the orbit originating at u(s) crosses the

x1-axis for the first time. By (3.2) lim u(0).t = (0,j(u)) E CT. Thus wet -.*

have the two curves 7±: [0,3] - CM defined in Section 2 such that

yj(0) - u(O), 7,(1) - t(u) and 7,(2) = Y,(u).

Proposition 3.6: For s sufficiently small, the orbit of u(s) lies in an

E-tube about 7+ over the interval [0,t*].

Proof: By continuity of the flow, given any E > 0, there exists t* > 0,

such that for s sufficiently small the orbit u(s) lies in an E-tube

about /+ or 7. over the interval [0,t*]. Assume the latter, i.e., u(s)

is close to 7.. For all s E (0,1] one has that P='(U(S).'(u(S))) - (x1 ,0)

where x, > 0. Hence one must be able to solve P (w(t(u),vi(u);c) =

(x1,O) where x, > 0. We shall show that this is not possible.
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Let t(u) - (p,mp,-p,-mp) where p > 0 and m > 0. That t(u)

must be of this form follows from Assumption 4 and Notation 2.5. This

in turn implies I?7(u) - (-mp,p,-mp,p). Thus, in order for

P*Iw~~uT-();) (X190), it must be the case that (l-c)mp + cp - 0

thus c - in/in-. But c c (0,I) hence mn < 0. Contradiction. 0

A straightforward calculation gives:

Proposition 3.7: If t(u) -(p,inp,-p.-inp) where p > 0 and m > 0

and if P*(w(t(u),'7+(u);c)) -(x 1 0O) where x, > 0 then c - in/r + 1.

Let t(v) - (q,-nq,-q~nq) where q > 0 and n > 0. Let

7[0,3] - CM such that -/(0) = v(0), 7(0) - 4(v) and

y_(2) = (nq~q,nq,q).

Proposition 3.8: For s sufficiently small, the orbit of v(s) lies in an

E-tube about 7 over the interval [0,tJ]. Furthermore, if

P~jw~)'?-();c) (x 1 .0), x, > 0 then c - n/(n+l).

The proof of Proposition 3.8 is similar to that of Propositions 3.6 and

3.7. Direct calculation gives

Ptj(w(~u)17+(u); in/i+l)) - i 2  
- 1, -2M)

P~l(w(t(v),Y?_(v); n/nil)) W L1 n , -2n).
+7 n
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Definition 3.9. a(O) e[-n.0] and 0(O) e [O,Ir] are given by

cos(C(O)) - ll (1,0 -m 2 +

2w n 2 -+

Using this definition one has that a and 0 are continvous on [0,1]

and hence, that TI is continuous on [0,I].

Proposition 3.10: T(O) < it.

Proof: Let

I P:(w(~u),fl'(u); m/m+ 1))

IIP2(W(C(U),'7+(u); m/rn+ )) II

and

-P*2(w(t(v),7i_(v); n/ni-I))

IIP2(w(t(v),fl (v); n/ni- ))Il

Then I -1/(1n
2+1) (m 2-1,-2m) and I* - 1/(n 2i-1) (n0-1,2n0. Since

m,n > 0 it is clear that I lies in quadrants III and IV of the plane,

and I* lies in quadrants I and Il of the plane. If it can be shown

that I* lies to the left of -I then clearly T(0) > ni. Let

(ab) - -I - I*. Showing that T lies to the left of -I is equivalent to

showing that a > 0.
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a - (l-m 2)/(l+m2) + (l-n 2)/(+n 2)

- 2(l-m 2n 2)/(m 2+l)(n2+1).

but Assumption 3 implies that mn < I and hence a > 0. 0

Let us for the moment consider the case a > 1 in (2.12), and how

it differs from what we have just done for a - 1. The x,-axis has

been singled out as a reference line in Assumptions 1, 2, and 4. When

a - 1 this is not a restriction since V is locally symmetric about the

origin. If a > 1 then the results one obtains will depend upon the

reference line chosen. Assumption 2(a) works for a - 1 since all

elements of S' are critical points. If a > I then the results will

change depending on whether u(O)-t converges to *I/€/'(l,0,-l,O) or

* l/vl+a2 (0,1,0,-a). Finally, we were able to give a sharp estimate for

Assumption 3 (and hence Theorem 3.5) because we knew how the orbits

u(s) converged to /,(u(s)) as s - 0. If a > 1 then the limit of the

crossing angles will be sensitive to m, n, and a. Therefore, while one

can perform the same type of analysis for a > I, the arguments will

have to be more delicate or the resulting theorems less precise.

Definition 3.11: Let M(n) - (z I H(z) - h). Let u(h): [0,11 - ET(h) and

v(h): [0,1] EB(h) be parametrizations of portions of ET(h) and

EB(h) respectively.

The results obtained up to this point have been proven only on the

invariant surface M. This is due to the fact that any orbit which lies

id 4in M(h), where h 0 0, is bounded away from the origin in R .
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Therefore, one cannot expect that the flow on S(O) would provide a

reasonable approximation to the orbits on M(h). However, having

found results for M(0), slightly stronger conditions on V as well as

the fact that V is continuous, should allow one to conclude that similar

results hold for M(h), as long as h is chosen sufficiently close to 0.

Assumption 6:

(a) u and v are continuous on [h-,h+] x [0,1].

(b) For all s c (0,1], k(u(h,s)) and ).(v(h,s)) exist.

(c) P,(u(h,s) - k(u(h,s))) - P,(v(h,s)) -Xvhs)

Definition 3.12. c(h,s) c [-I,0J and O(h,s) i [0,77] are def ined on

[h-,h+] x (0,1] by

cos"-'hs) - 'cP,(u(h,s).-kuhs))(,)
1P(u(h,s). - (u(h,s)))I11

cos(O(hs)) - 'cP, (v(h,s). )1(v(h,s))),( 1,0)>

11P(v(h,s). - (v(h,s))) 11

TOhMs - O(h,s) - ah,s).

Notice that , 0 and hence Y, are continuous on [h-,h4 ] x (0,1].

Theorem 3.13: Given Assumptions I - 6 and given Ih+I and Ih-I

sufficiently small. there exists at least one periodic orbit, ns(h), which lies

in M(h) and intersects ET(h) and EB(h).
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Proof: By Theorem 3.5 there exists an s* such that 7(0,s*) -1n.

Furthermore, by Proposition 3.10, 7t(0,0) > it. Thus, there exists an

4 E (0,s*) such that T(0,9') > n. Since V is continuous in a

neighborhood of (0,9'), there exists So> 0 such that 7(c,F) > it for

(E e 090] Similarly, by Assumption 5 V(0,1) < it, hence there exists

6> 0 such that 7f(c,l) < IT for iE E -6 1 6J

Let h- - max(-6 0 9-61) and h+ - min(60961). Then h C [h-,h+]

implies that there exists s*(h) such that 7(h,s*(h)) - it. 0

From now on h* will be chosen as in Theorem 3.13.

Assumption 7: If s I < s2then 1c(h,s1)I > Ia(hIS2 )I and IBS(h,s 1 )l > 10(h IS2)I.

Lemma 3.14: Assumptions 1-7 insure that N1(h) is unique for a given

h E [h-,h+].

Definition 3.15: Let so(h) 4E (0,9'(h)) such that

u(s0 (h)) -[0, X(u(s 0(h)))] 0 u(F(h)) -[0, l(u(r(h)))] 0

But, if s 6 (0,s,(h)) then

u(h,s) .[0, k(u(h,s))] () u(F(h)) -[0, X(u(F(h)))]

Let x(h,s) be the x1 -coordinate of P,(u(h~s)). )(u(h,s)). Let

s1(h) E- (0,9'(h)] such that x(h,s,(h)) -x(h,s*(h) and if s e (0,s,(h))

then x(h,s) < x(h,s(h)).
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Lemma 3.16: x(h,so(h)) ( x(h,r(h)) and if s < so then x(h,s) < x(h,§"(h)).

Proposition 3.17: so(h) = s,(h) - §(h).

Proof: In what follows, h is considered fixed and hence, to simplify

the notation, is suppressed. By definition so ( F. So assume so < S.

Furthermore assume x(s o) = x(F). By Assumption 7 l(so)l > IC(§)I,

hence one must be in the situation of Figure 8. But by continuity of

the flow, there exists s" < so  such that

u(s") • [0,X(u(s"))] n u(F) • [0,1(u(§'))] # 0

Contradiction. Thus x(so) < x(F). Now either u(F).[O,X(u(s))] intersects

u(§'.[O,),(u(§))] topologically transversally or not i.e., tangentially but not

topologically transversally. The former cannot happen since this forces

the existence of s" as above. But if the intersection is tangential then

u(s o) • [O,X(u(s))] , u(§).[O,X(u(§'))].

Therefore, so -'.

Thus either 0 < s, < so W s* or s, W ,, s*. Assume the former

then x(s,) < x(s*). Contradiction. 0

INSERT FIGURE 8.

4r
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Corollary 3.18: Given Assumptions 1-7:

(a) u(h,s) -[0, k(u(h,s))] nl u(h,S) -[0, k(u(h,S))] - 0 if s 0 S.

(b) v(h,s) -[0, k(v(h,s))J r) v(h,S) -[0, k(v(h,S))I - if s * S.

Proof: The machinery developed starting with Lemma 3.14 proves (a). The

proof for (b) is similar 0

Theorem 3.19. Given Assumptions 1-7, for h c [h-,h+I, I15(h) is an

isolated periodic orbit in M(h).

Proof: First one constructs what will be the isolating set. Since s*(h) is

the unique solution to VOsNh - ff, it must be that for

o < S1I < S* < s2< 1, one has T(h,s,(h)) > ff> h S().

The orbits Pj(u(s2(h)) .[O,)X(u(s.(h)))] and P1 (v(s1(h)) .[O,)k(v(si(h)))] for

i- 1,2 can be used to define a compact region, denoted N 12 (h),

contained in the set (x I V(x) 4 h). (See Figure 9) Let

PN12(h) - P-I(h)(N1 2(h)).

To see that PN 12 (h) is an isolating neighborhood of n;(h), one must

show that PN 1 2 (h) has no internal tangencies on PN 1 2 (h). By

construction, the only tangential orbits are those which pass through

u(s1(h)) or v(s1(h)) for i - 1,2. However, the conditions on csi(h))

or 0(s3(h)) force the orbits to leave in positive and negative time at the

points
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u(si(h)) " (u(si(h))

and
v(si(h)) " (v(si(h)).

Thus, there are no internal tangencies.

One now needs to show that 173(h) is the maximal invariant set in

PN 1 2(h). Assume not, i.e., assume that there exists some other orbit

n, it 113(h) which is contained in PN 1 2(h) for all time. Given sj(h)

and sk(h) such that

i sI(h) 4 s j(h) 4 s*(h) 4 s k(h) 4 SO()

construct PNjk(h) C M(h) in the same manner that PN 1 2(h) was

constructed from s, and s Let

PN(h) - rn (PNjk(h) I rl' C PNjk(h)).
, PN)j,k

By Corollary 3.18, there exists s,.(h) and sk.(h) such that PN(h) f

PNj.k.(h). Thus II' must have a point of tangency with PN(h). But

since 111 0 r s , this means that 11' must leave PN(h). Contradiction. 0

INSERT FIGURE 9

Definition 3.20: A line (segment) L is a gradient line (segment) of V,

if for every x c L such that VV(x) ; 0, one has that VV(x) is

parallel to L.
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Assumption 8: There exist gradient line segments Li, i = 1,2 of V

which intersect the origin. Furthermore Li intersects u(h,0) and

L2  intersects v(h,0) for all h f [h',h+].

The following proposition is obvious.

Proposition 3.21: If h c [h-,O] then there exist bounded orbits fl(h)

such that

(a) P,(n,(h)) C L, and intersects both EO(h) and ET(h).

(b) P1 (r 2(h)) C L2 and intersects both EO(h) and EB(h).

Furthermore, if h < 0 then 11(h) is a periodic orbit and if h = 0

then r1i(h) is a homoclinic orbit with the origin as the critical point.

Let V: (0,90] x - IR be continuous, 0 E (0,90], and write V0 (x)

- V(O,x). Assume that for fixed 0, V, satisfies Assumptions 1, 2 and

4-8 where 0 equals the angle in degrees between L1  and L2. Again

fixing 0, define (t(s), 0 (s) and TO(s) as before for the potential

function Vol

Proposition 3.22: Given V4, as above, TO(s) is a continuous function

on (0,90] x (0,1]. In addition, for fixed 0, Y4 is continuous on [0,1].

Proof: The fact that T, is continuous on [0,1] follows from the

construction of Tr and the definition of T4(0).
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For fixed *,one has the partial parametrization of ET(O) and

EB(0) corresponding to V., Denote these by u4, and vo, Since V

is continuous on (0,90] x R0, one can choose u4, and vo to be

continuous on (0,90] x [0,I]. Showing that T is continuous on (0,901 x

(0, 1] is equivalent to showing that a and 0 are continuous on this

region. Because a and 0 are similar, it is enough to show that a is

continuous.

()= COO1 cP,(ub(s) X bs))(')

1P2(UO(s). X(UO(s))) 11

Hence, it is sufficient to show that ut(s) )X(ut(s)) is continuous on

(0,901 x (0,1]. Because u is continuous, given c > 0, there exists

6 > 0, such that if 11(0,s) - (0o,s)I11 < 5 then LOW(s - u400(s)I11 < c. Now

by the standard theorems on the continuity of initial conditions for

solutions of ODE's one has that ub(s) - k(u40(s)) is continuous. 0

Theorem 3.23: Let V be as above. Let s*(O) be the unique solution to

T(O,s) it1. Then limo-..~ s*(O) - 0.

Proof: What needs to be shown is that, given c > 0 there exists

56>0 such that if 10 - 901 < 6 then Is*() < c. Let so' t 2

then Y(90,s 1) - n- 6 where So > 0. By Proposition 3.22, 7 is

continuous at (90,sl), hence there exists to < /2 such that, if

II(Os) - (90,s ')II < tothen T(0,s) < ff. But Proposition 3.10 states that

7(0,0) > 17 hence s*(k) < s' + to< if it -901 <6. 0
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It was shown earlier (Theorem 3.5) that if the angle 0 between the

projection of the two homoclinic orbits f1 (O), i - 1,2, onto x-space is less

than 90o, then there exists a unique periodic orbit n3(0). Theorem 3.23

says that as this angle goes to 900, the periodic orbit n 3(0) collapses

onto the two homoclinic orbits, fl1(0) and r(0).
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4. Crossing Orbits

Let V be a potential furction as in the previous chapters satisfying

Assumptions 1 - 8. Furthermore, for the sake of simplicity assume that the

positive x1 -axis is a gradient line of V. Let P1 (h)(R(h)) - 71(h) for

i - 1,2,3. Let J(h), h c [h-,h + ] be the compact region in I2 with

boundaries given by EO(h), ET(h), L, for i = 1,2, and n3(h). (See Figure

10). Let J(h) = Ptl(h)J(h). Given z c I' define 9(z) - z.R and

B(z) = Pi(e(z)), i = 1,2.

Definition 4.1: Let H(z) = h. Assume that there exists to and t1 such

that to < t1 , Pl(z-to) c f77(h), P,(z-t,) E nj(h), and z.[to,tl] c J(h). Then one

denotes z by zij(h) and zij(h) is called a crossing orbit from 11i(h) to

ni(h).

INSERT FIGURE 10.

In use zij(h) will be taken to mean both an orbit with the above

property and a generic point on such an orbit. Notice that e 1(zij(h))

intersects 77(h) and nl(h) transversally. In particular, the orbit

originates outside of J(h), enters J(h) via Ri(h), and exits J(h) via

nj(h).

Theorem 4.1- There exists zij(O) for ij - 1,2,3, (except i - j = 3).

Furthermore, there exists V(0) i EB(0) and U(0) E ET(O) so that

,(O) - z, 1(0) and U(0) - z22(0).
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Proof: Let U - u(0,9'). Then for 9" sufficiently close to 0, the orbit

of i lies in an E-tube about 7 over the interval [0,t*]. (See

Definitions 2.17 and 2.18.) Hence there exists t I > 0 such that

P1 (U-t) e R2(0). (See Figure 11(a).) Since the system is reversible, letting

to f -t1 , one has P(U -to) E 72(0). Clearly, P1 (U.[to,tl]) C w(0).

Therefore, Q - z2 2(0).

The proof that therc. C: i.:t V(0) - z, 1(0) is similar.

To find z3j' where j - 1,2, notice that because the positive x1 -axis

is a gradient line there exists z E J(0), such that P,(z) - (x,0), where

xi > 0 and z is on the stable manifold of the origin. By Definition 2.5

one has that lim z-t - (0,j) where t a (t ,0,- 1,0) and hence one can

define 7(z) as usual. Now choose F close to z, so that the orbit of X

lies in an E-tube about 7+(z) on the interval [0,t*], but so that X is not

on the stable manifold. Then F - z3 2. Similarly, choosing F close to z,

again, not on the stable manifold, but lying in an E-tube about 7, gives

z3 1 (See Figure 11(b)). The reversibility of the system implies the existence

of z13 and z 23 .

Recall Assumption 8. Let the slope of Li - mi where i - 1,2. By

Assumption 3, -1/mI < In 2. So choose z on the stable manifold of the

origin so that P,(z) - (x,,mx1) where m > m, and -l/m < M2 . (See

Figure 11(c)). As before, construct the 7+ curve corresponding to z. Then

there exists X close to z, so that the orbit of F lies in a [0,3] c-tube

about 7+. Since z E J(0), F can be chosen such that F e J(O). Now one

readily checks that there exists tot 1 > 0 such that P1(2.to) e RI(0), P(F .t)

e 712(0) and F.[to,tl] c J(0). Thus 2 - z, 2(0). Again, the reversibility of

.......... 141 X~r
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the system implies the existence of z. 1. 0

INSERT FIGURE 11.

Theorem 4.3: Let h C [h-,h+]. Then there exists zij(h) where

i,j - 1,2,3 (except i = j = 3). If h C [h-,0) then z83 (h) exists.

Furthermore, one can choose V(h) C EB(h) and U(h) C ET(h) so that

V(h) = zjj(h) and 0(h) = z 22(h).

Proof: If h < 0 then choose z so that H(z) - h, P,(z) = (x1 ,O) and

x1 > 0 and P2 (z) - (y1,0) where Y, < 0. Then z - z33(h).

Theorem 4.2 gives the existence of zij(O). Having chosen a

particular zij(O), notice that O(zij(O)) is bounded away from the origin

and that B 1(zij(O)) intersects fi (0) and ffj(O) transversally. Thus for

Ihl and 1h+1 sufficiently small, one can invoke the continuity of the

flow to insure that there exists zij(h).

The existence of V(h) - zj 1(h) and U(h) - z2 2(h) also follows

from continuity. .0

Theorem 4.4: For 1 > 0, but sufficiently small it is possible to choose

zj(O), for ij - 1,2,3 (except i , j - 3), such that (1 1,0) e O(zij(0)).

Proof: Recall the proof of Theorem 4.2. In each case, z was shown to

exist by choosing a r whose orbit lay inside an appropriate 7y

4-tube. But each such e-tube contains orbits which lie arbitrarily close to

Ni
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the origin and hence the positive xt-axis intersected with each E-tube

gives an open interval of the form (O,a). Choosing the minimum of

these five a's gives an interval (0,') such that if 11 E (0,F) then

there exists zi, such that (X,,O) ( e1(z1). 0

Corollary 4.5: For h E [h',h+], one can choose zij(h), where ij = 1,2,3

(except for i - j - 3), such that there exists X1 (h) > 0 with (! 1 (h),0) e

el(zij(h)). If h E [h",0) then the same is true for i - j - 3.

From now on it is assumed that z1j(h) is chosen in this manner.

In what follows the techniques of Rod [7] are used extensively. It is

assumed that the reader is familiar with [7] or has a copy readily

available. A slight modification of his work is necessary since li(O),

i - 1,2 are homoclinic orbits rather than periodic orbits. Thus we are

forced to regenerate his definitions and lemmas in this different setting.

We shall use the notation of [7] and refer to the proofs therein whenever

possible.

The orbits e(zij(h)) will be used to divide J(h) into three regions,

which in turn can be used to classify the solutions of (2.12) which

intersect J(h).

Notation 4.6: For h E [h',h+], let

Dj(h) - (x - (x1 ,x,)I x e 9 1(7(h)) and x 2 ( 0) C J(h).

D2(h) - (x - (xlx 2 ) I x e O1(0(h)) and x. ( 0) C J(h).

D3(h) - (x - (x ,x,) I x C e(z33(h)) and x. ( 1(h)).
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Strictly speaking D3(h) cannot be defined as above if h 0 0. So in

this case let

Ds(h) - ((x1 ,O) 1 0 4 ,( (h)

Ej(h) -Dj(h) UDk(h) for i 0 itk 0i

E1(h) - P;1(h)(Fi(h)) i - 1,2,3

Dj(h) - P-4 (h)(Dj(h)).

Let h 4 0, then

E - (X - (X1,X2) I if X2 0 then x e 01(u(h,l)) and

if x 0 then x 6 01 (v(h,l))).

Referring to Figure 12, let 0~(h), i - 1,2, be the curves shown. In

particular, iEt(h) connects ET(h) with EO(h) and iE(h) connects

EB(h) with EO(h). Let

Rj(h) is the compact region in J(h) bounded by Ei(h) and 0?(h) for

i- 1,2,3. (See Figure 12)

Ri(h) - Plh(ih)

INSERT FIGURE 12.

Theorem 3.19 guarantees that R8(h) is an isolating neighborhood for

Il,(h), h e [h-,h+].
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Assumption 9: There exists i?'(h) for i - 1,2, so that if h < 0 then

R1(h) is an isolating block for ni(h). If h - 0 then Ri(O) is as in Figure

13, in which case, it is assumed that the only bounded orbits in R(O) are

t1(O) and the fixed point at the origin. Furthermore, any orbit which is tangent

to ri(O) or 0 (0) lies either on the stable manifold, or on the unstable

manifold of the origin, or leaves Ri(O) in forward and backward time without

entering the interior of Ri(O).

INSERT FIGURE 13.

The importance of this assumption is that R,(h) and R2(h) are

isolating blocks for r,(h) and r 2(h). For conditions on V which induce

the existence of such isolating neighborhoods the reader is referred to

Churchill, Pecelli, and Rod [1].

Lemma 4.7: (Rod [7, Lemma 3.1]). Let i - 1,2,3, h ( 0.

(a) Di(h) is a closed topological two-disk.

(b) Each Ei and each £* is a topological two sphere.

Definition 4.8: For i - 1,2,3, h ( 0 let

bt(h) - (z c E(h) I there exists E > 0 with z.[0,E] C int Rj(h))

b (h) - (z E Ei(h) I there exists c > 0 with z.[-E,O] c int Rj(h))

Tj(h) - Ej(h)/(bt(h) U b-(h)).
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Lermma 4.9. For h 4 0, i - 1,2,3,

(a) the b are disjoint open hemispheres in Si transverse to the flow

with b- - ((x,-y) I (x,y) - b+).

(b) The tangency set, T i, is homeomorphic to a circle.
(c) The orbits through points of Ti "bounce off the region Ri to

the outside." (Except when h = 0 and i - 1,2).

Proof: For h < 0 or i - 3 see [7, Lemma 3.3]. So consider i = I,

h = 0. By Lemma 4.7, D2  and D3  can be represented as in Figure 14

where P1(8D1 i) - (X,,O) and concentric circles project to single points in R2

under Pr21  Notice the orientation chosen for the y values. The dark

lines represent the tangencies to D2  and D3  and thus TI(0) is

A homeomorphic to S1.

The proof for T 2(0) is similar except one considers D1 and D. 0

INSERT FIGURE 14.

Definition 4.10: For i = 1,2,3, h 4 0, and z C bt(h) set

at(h,z) - inf(t > 0 z . t G b- (h));

for z - b(h) set

o (h,z) - sup(t c 0 Iz.t E bt(h))

.
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provided that the inf and sup exist. Define T (h): b (h) -~ bi (h) by

Vp*(h)(z) = z* o*(h,z) where the domain of T*(h) is the same as that for

Lemma 4.11: (Rod [7, Lemma 3.41) For h C [h-,O], i - 1,2,3, c*(h) isj5

continuous where defined with the domain being an open subset of b*(h).

P()is a homeomorphism from domain to range with inverse y:~)

Definition 4.12: For h Ez [h-,O], i = 1,2,3, define

Tt(h) =(z ebt I z -(0,-) rV0p andz- 0)r E

T-(h) = (z C- b- I z 0~,) n E' it V and z -(--,O) n =j

Notice that T%() consists of those points whose orbits pass from E1

through R1 and leave via 0. in * time.

Definition 4.13: Let NT.*(h), i - 1,2,3, h 4E [h_,O], be the domain in b0(h)

of the mapping T (h).

Definition 4.14: For i - 1,2,3, h C- [h-,O], let

at(h) =(z e bt(h) I z -[,in) C R1)

a7(h) -(z E- bg-h) I z.(0,] CR1).

In addition for i -1,2, the origin is included in 0~(0).
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It should be clear that

Lemma 4.15: For i - 1,2,3, h e [h',O), T(h), NT (h) and a*(h) are

disjoint. This is also true for i - 3 and h - 0. If i - 1,2, and h - 0, then

this holds except that a+(0) n a-(O) is the origin.

It should also be clear that any orbit in J(h) which passes through

Ti(h) must leave J(h) in forward or backward time. Should an orbit

belong to a(h), then that orbit must be bounded in positive or negative time.

Finally, any orbit which belongs to NT(h) cannot leave J(h) through

Ri(h) immediately. Thus analyzing how orbits pass through J(h) can be

reduced to examining the orders in which the orbits can intersect Ti(h),

NT(h), and a(h).

Lemma 4.16: (Rod, 17, Lemma 3.5 and following comments]). For i - 1,2,3,

and h E [h',O]:

(a) The T(h) are homeomorphic open disks in E.

(b) The NT(h) are homeomorphic open sets in E

(c) The a(h) are homeomorphic subsets in E.

Lemma 4.17: (Rod, [7, Lemma 3.6]). For i - 1,2,3 and h E [h',0) or

i 3 and h -0:
(a) The boundary of T, W , is a continuum which separates E..

(b) NT is an open annulus with boundary Ti U 7i, where 7i is a

continuum which separates NT from T + in bt.

ERA
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(c) at(h) - 7i(h) U +Tt(h) is a continuum which separates E. into two

components.

Assumption 10: For h E [h',0) and i - 1,2,3, at is the intersection of a

sequence of closed annuli A*(i) C b, each containing a* in its interior, with

A*=I(i) C int(A*(i)) for m = 1,2,3 .....

Assumption 10 will be used in the following chapter to describe the

behavior of orbits passing through J(h) for h < 0. Again, for conditions

on V which induce the existence of such annuli, the reader is referred to

[1]. To see that these conditions actually imply Assumption 10, see [3].
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5. Bounded Orbits

In this section the potential function V satisfies Assumptions 1-10

and the positive x1-axis is taken to be a gradient line. The results are

presented as a classification of the solutions to (2.12) which intersect

J(h) for h e [h',h+]. This classification takes the form of a description

of the order in which the orbits pass through Ri(h) for i = 1,2,3. As

will be seen the classification changes dramatically depending on whether

h > 0, h = 0 or h < 0. The value of this example, however, comes

from viewing h as a bifurcation parameter. In particular, h = 0 is a

bifurcation point where the set of bounded orbits changes from a single

periodic orbit to a "pathology" of bounded orbits.

5.1. h - (O,h+ ]

Since h is assumed fixed and greater than zero, it will be dropped

from the notation.

Theorem 5.1: For h e (0,h + ] the only bounded orbit in J is r13.

Proof: This theorem is actually a corollary of Theorem 3.19 for the case

h > 0. Recall that in the proof an isolating neighborhood PN 1 is

constructed. In this case we can choose s, = 0 and s2 - 1. Hence

J - PN 12 . 0

-- ,'K t.. w. . , "s. ,f r g, w a .w : .Ir ' .u' w , w , w : ,.! . a ,ry ax . ., . : . , . . , . ,
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5.2. h = 0

For this case we return to the ideas of Rod [7], however, it will

become more evident where the differences lie between the description of

the bounded orbits in his example and ours. The first step is to describe

the behavior of the solutions to (2.12) as they cross the disks D 1, D 2

and D3 . Notice that 8D 1 = 8D 2 - 8D3.

Definition 5.2: For i = 1,2, let ei(l) and ei(2) be the first point and

last point, respectively, at which 0(zi) intersects D . Let e 3(l) =

(K0,-YrO) where 11 is as in Theorem 4.4 and Y, > 0. Finally, let

e3(2) = (31 0,Y1,O).

Using Corollary 4.5 and keeping in mind the conventions used in the

proof of Lemma 4.9, one can represent Di. i - 1,2,3 as is done in Figure 15.

Furthermore, 6(z1 1 ) divides D, into a closed right half disk, RD,

and a closed left half disk LD r * Similarly 0(z 2 2) divides D2  into

RD 2 and LD 2. Finally, D3  is divided into a closed upper half disk,

UD3 , and a closed lower half disk, LD 3 , by the orbits on the stable and

unstable manifold of the origin which project onto the positive x1-axis. In

addition, notice that except for 0(z1 1), RD1  consists of the orbits which

leave R 2 and immediately enter R 3, and LD I  consists of the orbits

which leave R3  and immediately enter R2 . Similar statements can be

made for LD 2, RD2, LD 3 and UD .

M kk ,-. TS
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INSERT FIGURE 15.

We are interested in describing how a, T and NT intersect

Dj ifor ij = 1,2,3. For our purposes it is sufficient to show that the

geometric information present in Figure 16 is correct. To do so we shall

restrict our attention to RD, and UD 3 and claim that the arguments

for the other half disks are similar. Our strategy is to determine the

sets 8RD 1 n Tt and 8UD3 A T t  and then use results from Section 4

to obtain Figure 16. To do this the following notation will be useful. If

a,b C- aRD, (8UD3 ) then (a,b) denotes the open segment of aRD 1

(8UD3 ) obtained by starting at a and proceeding to b along 8RD 1

(aUD3 ) in a clockwise direction. [a,b] denotes the corresponding closed

segment.

INSERT FIGURE 16.

We begin with two technical lemmas which, are relavent since

D2 V(O) - I.

Lemma 5.3: Let z - (x 0 ,,O0x0) where x0 > 0. Let F - (xO,yl,y2 )

where yj < 0, y2 > 0 and HL(F) - 0 (HL is defined as in (2.2)).

Consider e(z) and 0(f) solutions to the linear equations (2.3). Then

61(z) A 01(r) = (x0,O).



Proof: The exact solution to (2.3) is given by z(t) -exp(tA)z(O). More

explicitly, we have

rat o (t) o0

l ~tt) 0 (t) Tt
ixptA o eIt o
01 t(t) o e(t) j

where

et) - cos(it) - I (et + eCt)
2

and

T(t) - -i sin(it) =- i(et - e-t).
2

Thus a solution to 8,(z) r) 8,(Z) must be a solution to

e~~O (t0 )xN + V(t 0)y1  (5.1)

and

7(t)x 0 M T(t0 )y2. (5.2)

Since H2 (Z) = 0 and y, < 0 one has that

YW-/2 +y2(53
y~ I 0 +Y 2 (53

Substituting (5.2) and (5.3) into (5.1) gives

(8(t) - Gt0 ))x0 = 7(t0)X0 '/(I+?2(t))/7 2(t0 )

or

* 02(t) - eP(t 0 ) 0 2(t0) + 0'2 (t).

Expanding gives
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2 - (e"' + e'' + e -t+tO + e-t0) 0.

The only solution to this is t - to M 0. 0

Lemma 5.4 Let z = (x0,O,-x 0,O), xo > 0 and F - (x0,O,y1,y2) where

Y< 0, y2 > 0 and HL(2 - 0. Consider 0(z) and 0(F) solutions to

the linear equation (2.3). There 0,(Z) n 81(r) - (x0,O).

Proof: The proof is similar to that of Proposition 5.3. 0

Proposition 5.5: if II(,,0) II is small enough then z e (e3(I), Z2.1 iC TtI.

*Proof: Choosing II(K.,o) 1 small means that one can approximate the

orbits 9,(z) of the nonlinear flow (2.18) by the orbit of 0,(z) of the

linear flow (2.2). By Lemmas 5.3 and 5.4, 8,(z) (linear) is bounded by

the positive x1-axis and B 1(Z2,), both of which intersect V, (0). Thus

0,(z) (nonlinear) crosses V,(O), i.e., z c Tt+(0). 0

Since the x -axis is a gradient line of V, e3(2) e T+. Refering to

the proof of Theorem 4.2 one can conclude that [z 5 z15  C T+. By

definition e2 (l leaves J via V. thus e,(I) f T+ U T+. Similarly

e,(2) IT U T+. Therefore, nT+ n (z21 ,e2 (l) *,0 aT+ r) (e,(l),Z23)

and 8T+~ n (z ,(2)) 0.

Using the reversibility of Hamiltonian systems we can also conclude

that (e3(1,z, 1 C T, [ Z219e3(s)) C T V (ec2),ej(1)] C TV , n (e1 (s)IZ21) 1 0
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and M r I (zs1 ,e1 (2)) 0 *. Finally, by definition, for i - 1,2, e3 (1) a

and es(:) E a;.

With these general results established we can now turn to the specific

examples. We begin with RD r, Clearly [e1(1),e(l)] C T+  since it is

defined by 8(z11 ). Combining this with proposition 5.5 gives that

[e 1 (1),z 2 1] C T+ . Lemma 4.16 says that T+ r RD1  is an open set in

RD, hence there must be a component of this open set which contains

[e 1 (i),z2 1 ]. Similarly, there is a component of T+ n RD, which contains

[z2 sZ1 s]. The boundaries of these two components are subsets of a+

and a+ , respectively. But a + n a + . Thus we can represent

T + A RD and at A RD, i - 1,3, as is done in Figure 16.

Determining how Ti intersects RD 1  is slightly more difficult

since a, and a; both represent how the unstable manifold at the

origin intersects RD1  and hence, we do not have that a, n a; .

Never the less, from the previous general results we can conclude that

es(2) e T IA 8T2. Since [e1 (),e 1 (2)] C T, and T, is open in RD,

we have that a;, i - 1,2, is bounded away from [e1 (1),e 1 (2)]. Away

from e(z 1 1 ), RD, is transverse to the flow and thus 8T n 8T (which

represents a portion of the stable manifold to the origin) cannot branch

apart. Thus a, - a. and separates T, and T2 in RD1 . Thus, again

we have the result of Figure 16.

Now consider UD3 . Let e denote a line segment connecting 0

and z2 1  in UD3 . Recalling the proof of the existence of z21

(Theorem 4.2) one recognizes that if z G e\(O) then z E T + A T-.

[O,z2 1] U e bounds a region in UD, and Proposition 5.5 can be used to
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show that any element interior to this region is an element of T+.
[e(2),O) is defined by the x -axis and hence is contained in T+  thus

by previous remarks [e 2(i),O) r) T+ = 0. Therefore, we can conclude

that for i - 1,3, T and a+  are as in Figure 16. A similar

argument can be used for T- and a7, i - 2,3.

We are now in a position to consider the classification scheme and

prove the existence, or lack thereof, of certain orbits. Our classification

will be done by describing the sequence in which the orbits pass through

the interiors of the Ri's, i - 1,2,3. Let s be a sequence (sk) (possibly

bi-infinite) where sk 0 Sk+I and sk E (-,1,2,3,-). As will be shown to

classify the orbits of (2.18) which intersect J(h), h 4 [h',O), one needs

the following 9 types of sequences:

(TI) s is a bi-infinite sequence (sk)k=..., and Sk C (1,2,3).

(T2) s - (Sk)k=o and sk E (1,2,3).

(T3) s - (sk)k=-. and sk E (1,2,3).

(T4) s - (Sk)k=o and s. - sk (1,2,3) for k P I.
(T5) s - (sk)0=-.- and so =--% sk (1,2,3) for k 4 -1.

(T6) s - (Sk) =o and E (1,2,3).

(T7) s - (Sk)k=o and so - s C (1,2,3) for I 4 k 4 n.

(T8) s - (sk n=o and s- . C (1,2,3) for I 4 k < n.
(T9) s - (sk)k=o and soand sk E (1,2,3) for

0 k <n.

To see how these sequences describe orbits, notice that given s - (sk)

one can associate a sequence R(s) - (R(sk)), where R(Sk) - R.k if
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sh E (1,2,3). One says that an orbit follows s, if as time increases the orbit

passes into the interior of each Rok successively. If so  - as in

(T4), (T5) and (T9), then one says that the orbit entered R(s1) via Q.

Similarly, if s n -D as in (T5), (T8) and (T9), then one says that the orbit

left R(sn_) via r*..

Though all sequences of the form (TI) - (T9) are necessary in the case

h < 0, for h - 0 the results are much simpler. This is what one expects

since h = 0 is the bifurcation point. As Theorem 5.6 demonstrates, the

only sequences which appear fall into the types (T6) - (T9) and

furthermore, most sequences s in (T6) - (T9) are not realized. However,

comparing the results of Theorem 5.6 with those of Theorem 5.8 allows one

to see how the appearance of the critical point at the origin "separates"

orbits entering and exiting J via E u I: This separation is the

bifurcation which gives rise to the pathology of orbits in J.

Theorem 5.6: s is a sequence representing an orbit on the energy level

H = 0 if and only if s = (Sk) satisfies:

(1) There exists at most one k such that sk - 3.

(2) If (s,s 2,s3 ) - (1,2,1) or (2,1,2) then so - -- and S4 =

(3) If (sps12's) - (1,2,3) or (2,1,3) then so - .

(4) If (s1,s,,s3 ) - (3,2,1) or (3,1,2) then S4 .

(5) (1,2) and (2,1) are not possible sequences.

Proof: We first show that if s represents an orbit then s satisfies (1)

through (5). Let 0(z) be an orbit represented by s.

J!" ,1!I I- III ,N,-11 a ,
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(1) We need to show that if s, - 3 and k 0 1 then sk 0 3. Without

loss of generality we can assume so - 3 and we need only show that

sk i 3 for all k > 0. If s - M or si does not exist then we are done.

Thus si - I or s, = 2. In either case the argument that follows is similar

so let sl - 2. This implies there exists to such that z-to C LD 1 By Figure

16 one can conclude that z.t o  T+, z.t o C T +  or z t G a+ - a+. In the

first case, by the definition of T+, s2 = 1 and ss - m. In the second case

s and finally if z to C a+ - a+ then s2 does not exist.

(2) The assumption that (1,2,1) - (s,,s,,Ss) implies that there exists to

t, such that z.t o E LDs, z3.t G UD3  and z.(to,tj) C R,. Refering to

Figure 16 we have that z.t f T- implies z.t C T+  and zto  T+

implies z.t o e T, thus s -

, (3) Assume (s ,s,,s} (1,2,3), then there exists to < tj such that
Sz'to  LD, z't e RD and z.(tot) R2. - 3, z.t o c T

Z -t 39 1a n d C R . S in ce S 3 ,2

hence z.to e Ti and therefore so - -. If (s1,S2Ss) - (2,1,3) the

argument is similar.

(4) The argument is similar to that of (3).

(5) s - (1,2) means that a- intersects a+ non trivially in1 2

LD 3\(O). Figure 16 says this cannot happen.

Showing that, if s satisfies 1-5 then there exists an orbit whose path is

represented by s, is easy but tedious. (1) - (4) implies that the length of

s is less than or equal to 7. Thus there exists a finite number of

possible orbit types. Checking that each orbit in fact exists is therefore

possible and left to the reader. As an example we shall demonstrate the

existence of e(z) given a particular s.
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Let s - (-=,1,2,3,l,2,,) - (sk)6e0 .  We need to find z such that

O(z) is represented by s. Let K o  be a closed set with non-empty

interior such that K o C LD 3 \(T+ U T" U a) and K o ( a+ 0. We

can choose K. small enough so that ;p2(Ko) C RD,. Thus if z' E K o

and s' represents G(z') then s' - (-,,,2,3,...}. There exist subsets of

K o  which in forward time pass near rl3(0) and exit from R3  into R2.

(See Rod [7] for details). Thus 0 K, = (+ o +(Ko) n D.

Furthermore, K n T + t *. Thus if z e K1  and s represents 8(z)

then s - (-.,l,2,3,1,2,"). 0

Corollary 5.7: (a) If s - (3,1), (1,3), (2,3) or (3,2) then there exists

at least one orbit 6(z) which is represented by s.

(b) There exists at least countably many orbits of the type s - (1,3,1),

(2,3,2), (1,3,2) or (2,3,1).

(c) There exists at least uncountably many orbits of the type s if s

is not of type (a) or (b).

Proof: See Rod [7] for details. 0

5.3. h E [h',O).

In this region we have three periodic orbits whose stable and

unstable manifolds intersect transversely. For this case the work has

been done for us by Churchill and Rod, [2] and [3]. Theorem 5.8

implies that the set of bounded solutions is much more complicated when
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h < 0 than when h - 0, since any sequence of type (TI) - (T9)

corresponds to an orbit passing through J.

Theorem 5.8: (a) Let s be of type (TI). Then there exists uncountably

many solutions of (2.18) which pass through the sequence of regions R(s).

(b) Let s be of type (T2) - (T5) or (T7) - (T9). Then there exist

uncountably many solutions passing through the sequence R(s).

(c) Let s be of type (T6) with n i, 3. Then there exist at least

countably many solutions passing through R(s).

Proof: This theorem follows from a collection of theorems in [2] and [3].

More specifically, (a) follows from Theorem 1.3 in [3] and (b) and (c) follow

from Theorem 6.4 in [2]. 0

Theorem 5.9: Assume s is of type (TI) and periodic with period n, i.e.,

Sk = Sk+n for all k where n > 0. Then given any m > 0, there

exists at least one periodic orbit which passes through the sequence

k0+n{sk)k=ko

m-times and then closes up.

Proof: See [3], Theorem 1.3. 0

Both Theorem 5.8 and Theorem 5.9 are dependent on Theorem 1.3 of

Churchill and Rod [3]. In their paper they give 6 hypotheses that must

Id 11 11
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be satisfied in order for the theorem to hold. It is straightforward to

check that the first two are satisfied. The third hypothesis follows by

arguments similar to those of [3], Section 3. The fourth hypothesis is

Assumption 10 in Chapter 4 of this paper. The fifth hypothesis is also

satisfied by the results of Chapter 4. Hence only the sixth hypothesis

needs to be demonstrated. This is the content of the following

proposition.

Proposition 5.12: Let U C Ti be the maximal connected open (relative to

E1) set containing zij e T which is carried homeomorphically by the flow

onto U* C T+. Also, let K C a- be any connected set intersecting the

closure of U which is carried homeomorphically by the flow onto

K* C T+ C at. Then.:

(a) The closure of U is carried homeomorphically by the flow onto the

closure of U*.

(b) The closure of K is carried homeomorphically by the flow onto the

closure of K*.

Proof: Let e: U -. U* denote the homeomorphism. If p e U then

(p) - q E U* and there exist t(p) 0 0 so that p.t(p) - q. Let 4

be in the closure of U* and let qn - 4 where qn E U* for all n.

Then there exists p. i U and t(p,) > 0 such that Pn't(Pn) - qn. The

closure of U is compact, hence there exists a convergent subsequence

(Pm) such that pm - 0 an element of the closure of U. If it can

be shown that there exists a t(F) such that F -y(O) - 4, then (a) will
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be shown to be true. It is sufficient to show that (t(Pn)) is bounded.

So consider the case i - 1, j = 2. Define M(z) - (ml,m 2 ,m3 ) by

letting mi equal the number of times 0,(z) crosses Di for i - 1,2

and m 3  equal the number of times G1(z) crosses the positive x,-axis.

Since for z f U, 0,(z) always crosses each arc transversally,

M: U -. Z x Z x Z is continuous. But M(z1 2) - (0,0,1) thus

M(z) = (0,0,1) for all z i U. If (t(pn)) is unbounded then either:

(a) there exists P. c U such that M(pn) - (m1 ,m 2,m3 ) where either

m3 > I or mi > 0 for i - 1,2, or

(b) e(p n) remains arbitrarily long in Rs.

Case (a) cannot happen since M is continuous and case (b) cannot

happen since this would force in3 to be arbitrarily large.

The proof for the other zi's follows in a similar manner. The proof

of (b) is also similar. 0
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